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Nonuniform broken-parity waves and the Eckhaus instability
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We report measurements on broken-parity traveling finger patterns which form at an oil-air in-
terface driven by the rotation of two acentrically mounted horizontal cylinders. In the parameter
region studied here, the wavelength, traveling speed, and degree of asymmetry of the traveling fin-
gers vary along the interface. As our control parameter is increased, we observe a transition at which
the average values of these properties suddenly decrease. The traveling patterns are intermittently
interrupted by periods of disordered behavior, which become more frequent near this transition.
The variation of wavelength along the pattern allows us to observe what appears to be the Eckhaus
instability: outside a range of wavelengths, the drifting fingers become unstable, resulting in the
birth of new fingers if the local wavelength is too long, or the disappearance of a finger if it is too
short. We measure the Eckhaus stability boundary for this system.

PACS number(s): 47.20.Ky, 47.20.Lz, 47.54.+r, 68.10.Gw

I. INTRODUCTION

Instabilities in pattern-forming systems have been
studied extensively in recent years [1]. In this paper,
we report on some measurements on propagating one-
dimensional patterns with broken parity symmetry [2-7].
The phenomenon of parity breaking has been studied
in several well-known pattern-forming systems, includ-
ing several variants of directional solidification [8-19],
Taylor-Couette flow [20,21], and Taylor-Dean flow [22],
as well as in the system studied here, which is known as
the printer’s instability [23-28]. In all of these systems, a
stationary, one-dimensional pattern develops as the sys-
tem is driven out of equilibrium by varying an experi-
mental control parameter. This pattern is then subject
to a secondary parity-breaking instability, where it loses
its reflection symmetry, leading to a state in which the
pattern travels [2,3].

In our experiments, a thin layer of oil fills the narrow-
est part of the gap between two horizontal cylinders, one
mounted acentrically inside the other. The oil-air inter-
face running the length of the cylinders is straight when
they are at rest, but a pattern of fingers forms along the
interface when it is driven by rotating the cylinders. The
dynamical phase diagram of our experimental system is
shown in Fig. 1. The two control parameters are v; and
U,, the surface speeds of the rotating inner and outer
cylinders, respectively. In the region labeled stable, the
oil-air meniscus at the front of the apparatus is straight.
In the regions labeled S, the straight interface is unsta-
ble to a pattern of stationary fingers [23,29,30]. In the
regions labeled SW, solitary waves, consisting of local-
ized patches of broken-parity fingers, propagate through
the stationary finger pattern [23], and TW indicates a
state in which the entire interface consists of asymmet-
ric traveling fingers [23,26-28]. STC indicates a region
where the pattern is spatiotemporally chaotic [31]. In
our previous work on this system [27,28], we studied the
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traveling-wave state in the shaded portion of the TW re-
gion in the second quadrant of Fig. 1. In this region we
found that, for a given, fixed value of the rotation speed
of the outer cylinder, v,, increasing v; in the opposite
direction (i.e., moving to the left along a horizontal line
in Fig. 1) resulted in a supercritical bifurcation to the
broken-parity traveling finger state. We showed that the
pattern’s traveling speed, as well as the degree of asym-
metry of the pattern, were proportional to (v; — v})'/2,
where v} is the value of v; at the onset of the parity-
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FIG. 1. The dynamical phase diagram of the interface, in
terms of the rotation speeds, v; and v,, of the inside and
outside cylinders. S: stationary fingers; TW: traveling waves;
STC: spatiotemporal chaos; SW: solitary waves. The uni-
form broken-parity waves we studied in Refs. [27,28] exist in
the shaded region of the second quadrant. The current exper-
iments were done in the same TW region, but at higher v,. A
typical experimental path is shown by the dashed horizontal
line.
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breaking transition, and that the propagation speed was
linearly related to the asymmetry.

Parity-breaking transitions in one-dimensional pat-
terns have been studied theoretically by a number of
groups. Coullet and co-workers developed a model based
on coupled amplitude and phase equations, derived from
simple symmetry arguments [2,4,5]. They split the pat-
tern into parts which are even and odd with respect to
reflections, writing

U(z) = SUs(z + ¢) + AU (z + ¢). (1)

Here Us and U4 are even and odd functions of their ar-
guments, respectively, x is the position variable along the
pattern, and A, S, and ¢ are all assumed to vary slowly
in space. The amplitude A of the antisymmetric term
is taken as the order parameter of the parity breaking,
and ¢ is the phase of the pattern relative to that of the
underlying symmetric pattern. Taking into account the
required symmetries of the pattern, it is straightforward
to write down equations for the behavior of A and ¢ [2]:

Ay = Agy + pA — A% + €A+ -, (2)
and
bt = Poe TwA+ -, (3)

where we have assumed a supercritical parity-breaking
bifurcation. p is the control parameter, and ¢ and w
are unknown coupling constants. From these equations,
assuming a spatially uniform pattern, we expect the pat-
tern’s asymmetry A to grow like

A= (p+eha)'?, (4)

while the pattern’s phase velocity, which is equal to ¢,
should be proportional to A:

vy = wA. (5)

Our previous measurements [27,28] were in agreement
with these predictions.

Fauve and co-workers have studied the parity-breaking
instability in terms of a specific model, involving the res-
onant coupling between spatial modes of wave numbers
g and 2q [6,7]. This model has been applied to several
experimental systems, and, in particular, has been suc-
cessfully used to explain the parity-breaking bifurcations
observed in the directional cooling of nematics [10-12],
and in Taylor vortex flow [20]. In the case that the pat-
tern consists of only two modes, the ¢-2¢q model reduces
to that of Goldstein et al. [5], but we were unable to rec-
oncile our results on the printer’s instability [28] with the
specific predictions of the ¢-2¢ model, possibly because
our patterns involved many more than just two spatial
modes.

Another well-known instability of one-dimensional pat-
terns is the Eckhaus instability [32]. At a supercritical bi-
furcation to a state with a stationary spatial pattern, per-
turbations of a particular wave number become unstable
and grow, while above the onset, a band of wave numbers
is linearly unstable. Not all wave numbers within this

band lead to stable patterns, however, the stable wave
number band of stationary one-dimensional patterns is
limited by the Eckhaus instability [32,33]. Patterns with
wave numbers lying outside of the Eckhaus boundary are
unstable to a long-wavelength phase instability, which
eventually leads to the gain or loss of individual pattern
units so as to bring the pattern back inside the Eckhaus-
stable band. The Eckhaus instability has been studied in
several systems displaying stationary patterns [8,34—40].
The Eckhaus instability also affects traveling-wave pat-
terns, but it is only recently that it has been studied
in this context [41,42]. Janiaud et al. [43,44] have stud-
ied the Eckhaus instability in traveling waves produced
by the oscillatory instability experimentally in Rayleigh-
Bénard convection in compressed argon gas, and ana-
lytically and numerically in the framework of the com-
plex Ginzburg-Landau equation. Baxter et al. [45], and
Kolodner [46,47] have studied the Eckhaus instability in
traveling wave convection in binary fluid mixtures. The
experiments in each of these cases involved preparing the
system in a state outside the Eckhaus-stable band and
studying its evolution. A modulation of the pattern’s
phase develops and grows in amplitude, eventually lead-
ing to the gain or loss of one wavelength of the oscillatory
pattern in the former case [43], or the creation or anni-
hilation of a pair of convection rolls in the latter case
[45-47).

Recently, Cummins et al. [26] studied a sequence of bi-
furcations that occurs in an experimental system similar
to ours. They worked in the fourth quadrant of Fig. 1. -
With v, fixed at a low (negative) value, v; was increased.
First, the straight interface became unstable to the sta-
tionary fingering pattern. Next, a parity-breaking bifur-
cation to a traveling-finger pattern occurred. At a third
transition, the pattern’s wavelength suddenly increased
by roughly a factor of 2, and the fingers’ asymmetry and
velocity also increased.

In this paper we report on an experimental study of
the broken-parity traveling wave state in the printer’s in-
stability, at higher values of the outer cylinder speed than
we studied previously [27,28]. In this parameter region,
the traveling-finger patterns we observed were never per-
fectly uniform, and never perfectly stable. Rather, the
pattern’s local wavelength, and the fingers’ asymmetry
and traveling speed, varied slowly along the pattern, and
the relatively ordered finger patterns were intermittently
disrupted by transient bursts of disordered behavior. The
variation of wavelength along the pattern allows us to
observe what we interpret as the Eckhaus instability for
this system: when the local wavelength becomes too long,
new fingers are born, while if it is too short, adjacent fin-
gers will merge. A wavelength-changing transition, sim-
ilar to that observed by Cummins et al. [26], was also
observed. Despite this fairly complicated dynamical be-
havior, features of the theory of parity breaking [2,4,5],
for example, the connection between traveling speed and
asymmetry, remain important.

Our experimental arrangement has been described in
detail elsewhere [28]. The apparatus consists of two hor-
izontal, parallel cylinders, mounted acentrically one in-
side the other. The inner cylinder has radius r; = 50.4
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mm and length /; = 202 mm, and the transparent outer
cylinder has inner radius 7o = 66.7 mm, l; = 210 mm.
The gap between the cylinders is narrowest at the bot-
tom; in these experiments the minimum width of the
gap was fixed at 0.5 &+ 0.05 mm. Silicone oil with vis-
cosity u = 0.525 g/cms, surface tension o = 19.4 g/s?,
and density p = 0.963 g/cm?® at room temperature, filled
the gap [48]. The pattern at the forward oil-air interface
was monitored with a CCD video camera and monitor,
and data were recorded on a VCR or stored on a per-
sonal computer with a frame grabber for later analysis.
Finger wavelengths were measured directly from video
images. Traveling speeds were determined either by sim-
ply measuring the distance a finger moved over a small
number of video frames, or from space-time pictures such
as Fig. 3 below. The degree of asymmetry of the pattern
was determined using a modification of the Fourier trans-
form technique described in Refs. [28,49]. If the interface
height, U, is a single-valued function of position, =, we
can write it as a Fourier series,

U(z) = Z ajcos jqz + Z b; sin jqz, (6)
j=1 1=1

where ¢ is a wave number. We define our origin so that
b, = 0, and then define the asymmetry parameter A as

b2 1/2
(staim) X

i.e., as the square root of the fraction of the power con-
tained in the odd terms of the expansion. Over much of
the parameter range studied here, the interface height is
in fact a multiple-valued function of z, as can be seen
in Fig. 2 below. To handle this, we transform the inter-
face pattern to a single valued function U(l), where [ is
a distance parameter measured along the interface curve
itself. We write U(l) as a Fourier series,

U(l) = Z a.,i CcoSs ]q'l + Z b; Silqullv (8)
i=1 Jj=1

with a new wave number ¢’, and as above we set the coef-
ficient b} equal to zero. We then define a new asymmetry
parameter A’ by

&y o

NN

~ /

. b3 1/2
A= (Z(a§2+b92)) . 9)

By calculating both quantities for a number of single-
valued patterns, we can relate A’ to A. In what follows,
we present our results in terms of the parameter A, for
consistency with our previous work.

The Fourier spectra of the transformed multiple-valued
fingers are qualitatively similar to the spectra of similarly
transformed single-valued fingers [49]. The amplitude of
the second harmonic is typically on the order of 15% of
the amplitude of the first, with higher harmonics being
weaker. The Fourier spectra of uniform traveling pat-
terns were studied in detail in Ref. [28].

II. RESULTS

Measurements were taken along lines of constant outer
cylinder speed, v,, through the TW state, as indicated in
Fig. 1. v, was fixed at a selected value above the onset of
the stationary fingering pattern, and v; changed in small
steps. When v, is small, i.e., close to the onset of the sta-
tionary pattern, a spatially uniform traveling-wave pat-
tern of fingers develops via a supercritical parity-breaking
transition. The behavior of the pattern in this region has
been reported elsewhere [27,28], and is in accord with
what is expected from the theory of Coullet et al. [2,5].
The phase speed vy is linear in the asymmetry of the pat-
tern and proportional to the square root of v; — v}, where
v} is the value of v; at the parity-breaking transition, over
the entire range of existence of the traveling-wave state.

At higher values of v,, however, the behavior of the
traveling-wave patterns is more complex, and it is this
region with which we are concerned here. Figure 2 shows
a series of finger patterns observed for v, = 174 mm/s,
as v; is increased. The stationary pattern is unstable
at the lowest values of v; we can study, and is replaced
by a disordered state consisting of regions of traveling
fingers, whose speed and amplitude are time dependent,
separated by source and sink defects. At lower values of
Vo, this disordered state eventually relaxed to a uniform
traveling pattern [27,28]. However, at the outer cylinder
speeds studied here, at low v;, the disordered state never
settles down, consistent with the theoretical prediction
that the uniform traveling-wave state is unstable at onset

[7).

d FIG. 2. Traveling-finger patterns
4{(c) at vo = 174.3 mm/s. (a) v; = 6.33 mm/s;
(b) v; = 12.67 mm/s; (c) vi = 15.83 mm/s;

L (d) (d) vi = 17.42 mm/s; (e) v; = 23.75 mm/s;

(f) v: = 33.25 mm/s. The images show 174
4 (e) mm of the pattern’s length.
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As v; is increased, a more ordered traveling-wave state
eventually appears, as shown in Fig. 2(a). This pattern is
never perfectly uniform, however, nor is it stable in time.
Source or sink defects can remain in the pattern, typically
near the end of the apparatus, but usually the traveling
fingers appear at one end of the apparatus and disappear
at the other. At any given time, the wavelength of the
pattern changes along its length. In Fig. 2(a) this varia-
tion is about 5%j it is more obvious in Fig. 2(d), where
the wavelength increases by about 25% from left to right.
When the fingers are moving away from a source defect,
the pattern’s wavelength increases along its direction of
propagation, while if they are moving towards a sink de-
fect, the wavelength decreases. Furthermore, this pattern
only exists for, typically, a few minutes at a time, after
which it again becomes disordered. After a few seconds,
the disorder passes and the pattern returns to one like
that of Fig. 2(a), and so on. Patterns moving in either
direction (and thus with either sense of asymmetry) can
occur, and often the direction of propagation is reversed
after the passage of a disorded burst.

As v; is further increased, the pattern’s average wave-
length, phase speed, and finger asymmetry all increase,
as was found for the uniform traveling patterns at lower
vo. The variation in wavelength along the pattern also
becomes more pronounced, and the intermittent bursts
of disorder more frequent. Patterns from this regime are
illustrated in Figs. 2(b) and 2(c). A sudden transition
occurs between Figs. 2(c) and 2(d), at which the pat-
tern’s average wavelength drops, and the phase speed
and asymmetry of the fingers also decrease. As v; is in-
creased above this transition, the wavelength of the trav-
eling pattern becomes more uniform and the frequency of
the disordered periods decreases, and the average wave-
length, speed, and asymmetry increase again, as shown in
Figs. 2(e) and 2(f). Eventually, the SW region of Fig. 1 is
reached, in which localized patches of broken parity sym-
metry travel through a background pattern of stationary
fingers, then the stationary finger state, and, finally, the
straight interface reappears.

b
%

Y

Figure 3 is a space-time image, showing the motion of
a pattern traveling to the left over a period of 24 seconds.
For this pattern, v, = 174 mm/s and v; = 23.8 mm/s,
as in Fig. 2(e). This picture illustrates the increase in
the wavelength and traveling speed of the fingers in the
pattern as they move along the length of the apparatus.

The way in which the pattern’s characteristics vary
along the interface, at a fixed time, is illustrated in Fig. 4.
The particular image from which the data were taken
is shown in Fig. 4(a) (note that the interface extends
roughly one wavelength further than shown on both the
right and left ends of the figure). The fingers propagate
away from the source defect at the left side of the im-
age, so most of the pattern is moving to the right. The
local wavelength, defined as the distance between adja-
cent minima in the interface height, the asymmetry of
each individual finger, and each finger’s traveling speed
are shown as a function of position, in Figs. 4(b)-4(d).
In the case of fingers propagating away from a source
closer to the middle of the apparatus, the properties of
the pattern on the two sides of the defect have inversion
symmetry, as expected. The finger closest to the source
in Fig. 4(a) is longer, more asymmetric and faster moving
than its neighbors. This reflects the mechanism by which
new fingers appear at the source. Existing fingers move
away from the defect. When the distance between the
source and the nearest finger becomes too large, a small
ripple appears close to the defect, which is reabsorbed if
it is too close to the defect’s core; otherwise, it propa-
gates away as a new finger. New fingers initially move
quickly, but slow down when they have caught up with
the rest of the drifting pattern. Near a sink defect, the
opposite behavior is observed: the pattern slows and be-
comes compressed, until a finger disappears into the sink.
This behavior is similar to that observed at the Eckhaus
instabilty of the pattern, which we discuss below.

Once far enough (i.e., a few wavelengths) away from
the source, the pattern’s wavelength, speed and asym-
metry all increase in a similar way, and appear to be
saturating towards the end of the apparatus. Figure 5(a)

FIG. 3. A space-time image of a pattern
traveling to the left at v, = 174.3 mm/s,
v; = 23.75 mm/s. The speed and wavelength
of the fingers increase as they move along the
length of the apparatus. Time runs from top
to bottom and the figure covers 24 s. 151 mm
of the pattern are shown.
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FIG. 4. The variation of the local properties of a nonuni-
form traveling pattern, as a function of position, for
vo = 261.4 mm/s, v; = 55.42 mm/s. (a) The pattern it-
self. (b) The local wavelength, A. (c) The asymmetry of the
fingers, A. (d) The local traveling speed, vg.

is a plot of phase speed vs asymmetry for the individual
fingers in this pattern, as well as for fingers from patterns
at two other values of the cylinder speeds. The fingers in
the pattern display a linear dependence of phase speed on
asymmetry, as did the uniform traveling-finger patterns
studied previously [27,28]. Straight-line fits to these data
sets have intercepts equal to zero within error, indicating
that, even for these patterns where the wavelength is not
constant, the ¢, term in Eq. (3) is small. The slope of
the vy vs A graph is the parameter w of Eq. (3). w is plot-
ted as a function of v, in Fig. 5(b), which includes a data
point for the uniform traveling-finger states of Ref. [28].
Figure 5(b) indicates that w is proportional to v, — vec,
where v, is the value of v, at which the stationary finger
pattern appears when v; = 0. A fit to the data, shown in
the figure as a dashed line, gives w = 0.40£0.02(v, — Vo).

Figure 6(a) is a plot of the square of the pattern’s av-
erage phase speed against the control parameter, v;, and
Fig. 6(b) shows the square of the asymmetry parameter
A as a function of v;. v2 is linear in v; at low v;, in agree-
ment with our results for the spatially uniform traveling
patterns [27,28]; here the bifurcation to the broken-parity
state occurs at v; = 0 within our experimental resolution.
At v; = 16 mm/s, the wavelength-changing transition de-
scribed above occurs and the phase speed suddenly drops.
As shown in Fig. 6(b), a drop in the average asymmetry
of the fingers occurs simultaneously. In a plot of vy vs
A, however, there is no sign of this transition: data from
above and below the transition fall on the same continu-
ous curve, as shown in Fig. 7. The relationship between
v4 and the asymmetry parameter is linear at low values
of A, as found for the spatially uniform patterns [27,28],,
but, in contrast to what was found in that case, the lin-
earity no longer persists over the whole range of existence
of the traveling state.

The pattern’s behavior changes as the rotation speed
of the outer cylinder is increased. The range of exis-
tence of the disordered state at low v; increases, and the
wavelength-changing transition moves to higher values
of v;. The transition also becomes weaker, i.e., the mag-
nitudes of the changes in average phase velocity, wave-
length, and asymmetry all become smaller. At relatively
high values of v,, the transition disappears completely.
At these high values of v,, the transient bursts of disor-
der seen at lower v, no longer occur. Figure 8 is a plot
of vi vs v; for v, = 436 mm/s; the square of the phase
speed increases linearly with v; at low v;, then smoothly
decreases as the transition back to stationary fingers is
approached. At this value of v,, no sudden drop in vy is
visible in the traveling-wave state.

The variation of wavelength along the patterns leads to
the creation or annihilation of fingers via what appears to
be an Eckhaus instability. As the fingers move away from
a source, their wavelength grows. When the local wave-
length becomes larger than a certain value, the finger
becomes unstable and ripples start to appear on the for-
ward side (i.e., the less steeply sloped side) of the finger’s
base. Some of these can be seen in Fig. 2, for example,
at the right-hand side of Fig. 2(e). These ripples repre-
sent attempts at the formation of new fingers. Sometimes
these attempts are unsuccessful: the ripple moves back
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towards, and is reabsorbed by, the parent finger. If the
ripple initially develops far enough from the parent fin-
ger, however, it will grow and move away, forming a new,
independent finger, and causing the local wavelength to
decrease back into the stable range. New fingers develop
at source defects in a similar way, as described above.
This process is illustrated in Figs. 9 and 10. Figure 9 is
a sequence of images of the interface for v, = 240 mm/s
and v; = 47.5 mm/s. The pattern in this case is moving
to the left. Inmitially [Fig. 9(a)], the fingers at the left-
hand side of the front have a wavelength which is too
long, and they are unstable. A new finger is trying to
nucleate just in front of the finger labeled 1 in Fig. 9(a),
but it is too close, and in Fig. 9(b) it is in the process of
being reabsorbed by finger 1. Another attempt is made
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FIG. 5. (a) The phase speed plotted against asymmetry for
each finger in three nonuniform patterns at different cylinder
speeds. Circles: v, = 174.3 mm/s, v; = 23.75 mm/s; squares:
v, = 217.8 mm/s, v; = 55.42 mm/s; triangles: v, = 261.4
mm/s, v; = 55.42 mm/s. The data shown as triangles are
from the pattern of Fig. 4. The slopes of the lines through the
data give the parameter w of Eq. (3). (b) w as a function of v,.
The circles are from the present work, and the triangle from
our study of the uniform traveling wave states in Refs. [27,28).
The arrow indicates v,., the onset value for the stationary
fingering pattern.
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in Fig. 9(c), with the same result: the new finger is re-
absorbed in Fig. 9(d). In Fig. 9(d), the finger labeled 2
has also become unstable, and a small ripple can be seen
developing in front of that finger. Again the new finger
is reabsorbed, as shown in Figs. 9(e) and 9(f). Finally,
in Fig. 9(g), a new finger successfully forms; it can be
seen moving away from its parent finger in Figs. 9(h)-
9(j). The time elapsed from the start to the end of Fig. 9
is 2.73 s.

Figure 10 is a space-time representation of a similar
sequence of events at v, = 174 mm/s, v; = 22.2 mm/s.
The time from top to bottom of the figure is 13.5 s. As
in the case discussed above, prior to the creation of the
new finger, there are several unsuccessful attempts, both
on the eventual parent finger and its neighbors. These
show up on the space-time picture as modulations in the
widths of the fingers.

Observations of events such as these allow us to con-
struct a stability diagram for broken-parity traveling
waves in this system. We take the long-wavelength sta-
bility limit of the fingers to be defined by the wavelength
at which the ripples, which represent attempts to create
new fingers, first appear. The short-wavelength limit is
given by the smallest interfinger spacing for which the
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two fingers do not recombine. The results of these mea-
surements are shown in a plot of control parameter, v;,
against wavelength for two values of v, in Fig. 11. The
data points at v; = 0 indicate the wavelength of the sta-
tionary pattern there. Between v; = 0 and the lowest-v;
data points in the figure, the pattern was disordered and
measurements of the stability boundary were not possi-
ble. The data for v, = 218 mm/s (the circles) show a
definite kink, most obvious on the high-wavelength side
of the stability boundary. This kink coincides with the
transition discussed above, at which the pattern’s wave-
length suddenly changes. The kink does not appear in
data taken at high values of v, (for example, the stars in
Fig. 11), for which the transition does not occur. While
the low-wavelength side of the boundary doesn’t change
much as v, is varied, the high-wavelength side moves
in and the stable region becomes more narrow as v, is
increased. The propagating finger pattern normally ap-
pears to select wavelengths near the long-wavelength sta-
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FIG. 8. v} as a function of v; at v, = 435.7 mm/s.
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bility boundary, and fingers with shorter wavelengths are
only seen during creation or annihilation events.

III. DISCUSSION

At very small values of v;, the patterns we observe are
spatially and temporally disordered, as described above,
and at higher v;, the disorder persists in the form of in-
termittent disruptions of the nonuniform broken-parity
state. In our measurements at lower v, [27,28], and in
Ref. [26], the disordered state was transient. A spatially-
uniform broken-parity state is expected, on the basis of
a stability analysis of a generalized version of Egs. (2)
and (3), to be unstable at onset [7]. In the Appendix, we
show that spatially-uniform solutions of Egs. (2) and (3)
themselves, without any additional terms, are also lin-
early unstable to long-wavelength perturbations close to
onset. The nonuniformity of the patterns we have studied
here may be a manifestation of this instability. Indeed,
given that the uniform traveling-wave state is unstable
at onset, the nonuniformity of the traveling-wave states
studied in this work is perhaps less surprising than the
fact that the disordered state eventually gives way to a
stable, uniform state at low values of v, in Refs. [27,28],
and also in Ref. [26]. The uniformity in those cases may
be a result of the finite length of the experimental ap-
paratus [30], or a nonlinear effect not accounted for in
the linear stability analysis. The temporal coexistence of
the disordered state with the nonuniform traveling pat-
terns reported above is also interesting. The intermit-
tent appearances of the disordered pattern are related to
the wavelength-changing transition we observe—the dis-
order apperars more frequently near the transition—but
the nature of the relationship is not understood.

In Ref. [26], Cummins et al. describe a series of transi-
tions in fingering patterns in an experiment very similar
to the one discussed here. Although they worked in a
different parameter range, there is substantial agreement
between their results and ours. Cummins et al. did some
experiments with v; fixed at a value well above the on-
set of stationary fingers, and varied v,, following vertical
lines downward in the fourth quadrant of Fig. 1. Cum-
mins et al. observed that, as v, is decreased below zero,
the pattern is initially disordered, as in our case, but that
after roughly ten minutes, it settles down to a uniform
traveling wave, possibly with defects. In our case, tran-
sient disordered states continue to reappear every few
minutes. As they moved further down in v,, their pat-
tern wavelength increased, and then, at a discontinuous
transition, it suddenly decreased. This behavior is analo-
gous to what we observe in the second quadrant of Fig. 1.

In another set of experiments reported in Ref. [26],
Cummins et al. fixed v, at a small negative value, then
increased v; along horizontal lines in the fourth quad-
rant of Fig. 1. Beyond the parity-breaking transition,
the wavelength of their pattern decreased. They then
saw a transition at which the wavelength suddenly in-
creased by roughly a factor of 2, before decreasing again
as v; was further raised. The phase diagram they con-
struct on the basis of their observations is consistent with
what we observe.
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(a)

(b)

(c)
g (d) FIG. 9. The formation of a new finger
when the local wavelength becomes too long.
(e) Here v, = 239.6 mm/s and v; = 47.50 mm/s.
The images were recorded at times (a) 0 s;
(f) (b) 0.10's; (c) 0.23 55 (d) 0.35 s; (e) 0.68 s; (f)
0.83 s; (g) 1.00 s; (h) 1.23 s; (i) 1.73 s; and

Cummins et al. [26] also note that the short-wavelength
fingers they observe before the wavelength-changing tran-
sition had well-defined wavelengths, but some scatter in
velocity. In contrast, the long wavelength fingers ob-
served above the transition had considerable scatter in
their wavelength, but well defined velocities. We observe
a systematic variation in both wavelength and velocity
with position in the pattern, rather than random scat-
ter, and, as shown in Fig. 4, the variations are coupled.
An important point is that for the long-wavelength fin-
gers in Ref. [26] as well as for our patterns, the wave-
length selection is not perfect, and in both cases a range
of wavelengths is observed.

Despite their nonuniformity, and their intermittent dis-
ruption by the disordered bursts, aspects of the behavior
derived in the context of spatially-uniform broken-parity
waves remain valid for our patterns. At low v;, the pat-
tern’s average phase speed, vy, grows as the square root
of v;, as shown in Fig. 6(a). While our data for the asym-
metry, A, are noisier, it appears that the average of A is

also proportional to vil /2 at low v;. Figure 7 shows that

(g) () 2.73 s.
(h)

i (i)
j ()

vg is proportional to A at low speeds. The linear rela-
tionship between vy and A also holds for the individual
fingers in the pattern at a given time, as was illustrated
in Fig. 4. These results are all in agreement with the the-
oretical [2,5] and experimental [27,28] results for uniform
patterns.

Goldstein et al. [4,5] have discussed the behavior of
broken-parity traveling waves near spatiotemporal de-
fects. They studied a generalization of the coupled equa-
tions, Egs. (2) and (3), in which ¢ is the phase of a com-
plex field, and observe that the mechanism by which fin-
gers vanish at a sink defect in their model is very similar
to that of the Eckhaus instability. In Fig. 14 of Ref. [5],
they show patterns near source and sink defects, calcu-
lated from their model. At the defect, the broken-parity
order parameter approaches zero, which causes distor-
tions of the pattern. Close to a sink, the pattern is
compressed and its phase speed smaller relative to the
uniform, propagating pattern far from the defect. Near
a source, the pattern is stretched and travels faster. This
behavior is in accord with what we observe close to source

FIG. 10. A space-time image of a drifting
pattern showing the nucleation of a new fin-
ger. Here v, = 174 mm/s, v; = 22.2 mm/s.
Time runs from the top down, and the total
time is 13.5 s; 91.6 mm of the system length
is shown.
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FIG. 11. The measured Eckhaus stability boundary for
traveling waves in our experiment, for two values of v,. Out-
side of the boundary the fingers become unstable, resulting in
the creation of a new finger on the long-wavelength side, or
in the loss of a finger on the short-wavelength side. Circles:
Vo = 217.9 mm/s; stars: v, = 348.6 mm/s.

and sink defects, as described above, although our pat-
terns are not uniform away from the defects in this pa-
rameter range.

As mentioned in Sec. I, previous measurements of the
Eckhaus instability in traveling-wave systems were done
by manipulating the system so as to attain a state with an
average wavelength outside of the Eckhaus-stable band
[43,45-47]. The evolution of the pattern was then stud-
ied. The Eckhaus instability is a phase instability, and,
at least initially, manifests itself as a spatial modulation
of the pattern’s local wave number, with the pattern am-
plitude remaining constant. As the instability develops,
amplitude variations eventually appear, and, at the point
in space time at which the pattern gains or loses a pattern
unit, the amplitude must go to zero.

The situation in our experiment is rather different.
Here, we do not prepare the system in any particular ini-
tial state. Rather, the system selects a spatially nonuni-
form state of its own accord, and the dynamics of this
state lead to the occurrence of an instability when the
pattern’s wavelength evolves out of a stable wavelength
band. This instability results in the birth or death of
fingers, so as to bring the wavelength back inside the
stable band. This adjustment of wave number by the
creation or annihilation of pattern units is characteris-
tic of the Eckhaus instability. We have assumed that
the wavelength at which new fingers first attempt to de-
velop corresponds to the long-wavelength boundary of
the Eckhaus-stable wavelength band, and that the mini-
mum wavelength below which adjacent fingers merge cor-
responds to the short-wavelength boundary. However,
the nonuniformity of the wavelength along our patterns
suggests that the pattern is already subject to a phase
instability, independent of the creation or annihilation of
fingers. We suggested above that this nonuniformity was
related to the instability of the broken-parity wave at its
onset.

IV. SUMMARY

We have presented experimental results on the dy-
namics of broken-parity traveling-finger patterns in the
printer’s instability. In the range of control parameters
we studied here, the phenomenology of our system is
quite complex. The pattern is unstable at the onset of
parity-breaking, as predicted theoretically [7], and the
instability persists above onset in the form of spatial
nonuniformities of the pattern, and intermittent bursts
of disorder which disrupt the pattern. The pattern is
also subject to the Eckhaus instability, which limits the
band of wave numbers over which the individual traveling
fingers are stable. In spite of this complexity, some basic
results of the theory of parity breaking in patterns [5], in
particular the relationship between the pattern’s asym-
metry and its traveling speed, remain valid. There are
several of our results which warrant further investigation,
including the nature of the transient disordered bursts
and their connection with the wavelength-changing tran-
sition discussed above, and a complete understanding of
this system will also require further theoretical study.
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APPENDIX: LINEAR STABILITY ANALYSIS OF
SPATIALLY-UNIFORM BROKEN-PARITY
WAVES

We consider Egs. (2) and (3), which we repeat here for
convenience:

Ay = Aee + /-LA - A3 + GQSZA 3 (Al)

¢t = ¢zz + wA.

A is the amplitude and ¢ the relative phase of a propagat-
ing broken-parity wave. p is the control parameter, and
€ and w are constants. These equations have a spatially-
uniform solution given by A = Ao, ¢o. = [(g — g0)/0),
where go, the wave number of the underlying, symmet-
ric pattern, and g, the wave number of the pattern with
broken parity, are independent of .

Inserting these solutions into Egs. (A1) and (A2), it is
straightforward to show that, in a steady state,

(A2)

Ao = [p+ (g — 90)/q0]"/* (A3)

and
ot = wAo. (A4)
Since Ay is real, this solution exists for
A} = p+e(g—qgo)/q0 > 0, (A5)

as shown in Fig. 12. We now add a small perturbation
Ag to test the stability of the uniform solution. We write
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FIG. 12. Linear stability diagram of the spatially-uniform
traveling-wave state.

A= A0+Aleikz+)\t’ (Aﬁ)

¢ = Po + prettTA, (A7)

where k is the wave number of the perturbation and A its
growth rate; for the unperturbed solution to be stable we
must have Re{\} < 0. Substituting Eqs. (A6) and (A7)
into Egs. (A1) and (A2), and linearizing in the small
perturbations, we get

(A+k*+2A2) Ay —ickAgdy =0, (A8)

wA; — (A+ k%) ¢ =0. (A9)

The characteristic equation for A is

N4 Ag+y=0, (A10)

with
B = 2(k* + A?) (A11)

and
v = k*(242% + k?) — iwek Ao. (A12)

In the long-wavelength limit, i.e., kK = 0, v < 82, so,
to order k%, the solutions for X are

(A13)

Taking the largest of the two solutions to Eq. (A13), the
stability requirement becomes

2
Re{%+zﬁ}>0,

from which, using the definitions of v and 3, we find that
the uniform solution is stable for

qo

(A14)

lew]

2v2

Thus, spatially uniform solutions exist, but are unstable,
in the range

0<p+e(q——ﬂ> <
90

(A15)

Jew]|
ma

as shown in Fig. 12. The coupling terms in Eqgs. (A1)
and (A2) are always destabilizing, regardless of the sign
of the coupling constants w and e. This result agrees
with that of Fauve et al. [7], derived from a more general
version of the equations of motion.

(A16)

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).
[2] P. Coullet, R.E. Goldstein, and G.H. Gunaratne, Phys.
Rev. Lett. 63, 1954 (1989).
[3] P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 (1990).
[4] R.E. Goldstein, G.H. Gunaratne, and L. Gil, Phys. Rev.
A 41, 5731 (1990).
[5] R.E. Goldstein, G.H. Gunaratne, L. Gil, and P. Coullet,
Phys. Rev. A 43, 6700 (1991).
(6] S. Fauve, S. Douady, and O. Thual, Phys. Rev. Lett. 65,
385 (1990).
[7] S. Fauve, S. Douady, and O. Thual, J. Phys. (Paris) II
1, 311 (1991).
[8] A.J. Simon, J. Bechhofer, and A. Libchaber, Phys. Rev.
Lett. 61, 2574 (1988).
[9] J.-M. Flesselles, A.J. Simon,
Adv. Phys. 40, 1 (1991).
[10] H. Levine and W.-J. Rappel, Phys. Rev. A 42, 7475
(1991).
[11] H. Levine, W.-J. Rappel, and H. Riecke, Phys. Rev. A
43, 1122 (1991).

and A.J. Libchaber,

[12] W.-J. Rappel and H. Riecke, Phys. Rev. A 45, 846
(1992).

(13] G. Faivre, S. de Cheveigne, C. Guthmann, and P.
Kurowski, Europhys. Lett. 9, 779 (1989).

[14] G. Faivre and J. Mergy, Phys. Rev. A 45, 7320 (1992).

[15] G. Faivre and J. Mergy, Phys. Rev. A 46, 963 (1992).

[16] K. Kassner and C. Misbah, Phys. Rev. Lett. 85, 1458
(1990).

[17] B. Caroli, C. Caroli, and S. Fauve, J. Phys. (Paris) I 2,
281 (1992).

(18] K. Kassner, A. Valance, C. Misbah, and D. Temkin,
Phys. Rev. E 48, 1091 (1993).

[19] J.T. Gleeson, P.L. Finn, and P.E. Cladis, Phys. Rev. Lett.
66, 236 (1991).

[20] H. Riecke and H.-G. Paap, Phys. Rev. A 45, 8605 (1992).

[21] R. Wiener and D.F. McAlister, Phys. Rev. Lett. 89, 2915
(1992).

[22] 1. Mutabazi and C.D. Andereck, Phys. Rev. Lett. 70,
1429 (1993).

[23] M. Rabaud, S. Michalland, and Y. Couder, Phys. Rev.
Lett. 64, 184 (1990).



49 NONUNIFORM BROKEN-PARITY WAVES AND THE ECKHAUS . .. 2129

[24] Y. Couder, S. Michalland, M. Rabaud, and H. Thomé,
in Nonlinear Evolution of Spatio- Temporal Structures in
Dissipative Continuous Systems, edited by F.H. Busse
and L. Kramer (Plenum, New York, 1990), p. 487.

[25] M. Rabaud, Y. Couder, and S. Michalland, Eur. J. Mech.,
B/Fluids 10, 253 (1991).

[26] H.Z. Cummins, L. Fortune, and M. Rabaud, Phys. Rev.
E 47,1727 (1993).

[27] L. Pan and J.R. de Bruyn, Phys. Rev. Lett. 70, 1791
(1993).

[28] L. Pan and J.R. de Bruyn, Phys. Rev. E 49, 483 (1994).

[29] V. Hakim, M. Rabaud, H. Thomé, and Y. Couder,
in New Trends in Nonlinear Dynamics and Pattern-
Forming Phenomena, edited by P. Coullet and P. Huerre
(Plenum, New York, 1990), p. 327.

[30] L. Pan and J.R. de Bruyn (unpublished).

[31] S. Michalland, M. Rabaud, and Y. Couder, Euro-
phys. Lett. 22, 17 (1993).

[32] W. Eckhaus, Studies in Nonlinear Stability (Springer,
Berlin, 1965).

(33] L. Kramer and W. Zimmermann, Physica D 16, 221
(1985).

[34] M. Boucif, J.E. Wesfreid, and E. Guyon, J. Phys. (Paris)
Lett. 45, L413 (1984).

[35] M. Lowe and J.P. Gollub, Phys. Rev. Lett. 55, 2575
(1986).

[36] M.A. Dominguez-Lerma, D.S. Cannell, and G. Ahlers,

Phys. Rev. A 34, 4956 (1986).

[37] G. Ahlers, D.S. Cannell, M.A. Dominguez-Lerma, and R.
Heinrichs, Physica D 23, 202 (1986).

[38] H. Riecke and H.-G. Paap, Phys. Rev. A 33, 547 (1986).

[39] S. Rasenat, E. Braun, and V. Steinberg, Phys. Rev. A
43, 5728 (1991).

[40] L. Fortune, W.-J. Rappel, and M. Rabaud (unpublished).

[41] W. van Saarloos and P.C. Hohenberg, Physica D 56, 303
(1992).

[42] H.R. Brand and R.J. Deissler, Phys. Rev. A 45, 3732
(1992).

[43] B. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H.
Richter, and L. Kramer, Physica D 55, 269 (1992).

[44] B. Janiaud, E. Guyon, D. Bensimon, and V. Croquette,
in Nonlinear Evolution of Spatio- Temporal Structures in
Dissipative Continuous Systems, edited by F.H. Busse
and L. Kramer, NATO Advanced Study Institute Ser.
B2, Vol. 225 (Plenum, New York, 1990), p. 45.

[45] G.W. Baxter, K.D. Eaton, and C.M. Surko, Phys. Rev.
A 46, 1735 (1992).

[46] P. Kolodner, Phys. Rev. A 46, 1739 (1992).

[47] P. Kolodner, Phys. Rev. A 46, 6431 (1992).

[48] Aldrich Chemical Corp., Catalog No. 14,615-3.

[49] L. Pan and J.R. de Bruyn, in Spatio- Temporal Patterns
in Nonegquilibrium Complex Systems, edited by P. Caldis
and P. Palffy-Muhoray (Addison-Wesley, Redwood City,
CA, in press).



FIG. 10. A space-time image of a drifting
pattern showing the nucleation of a new fin-
ger. Here v, = 174 mm/s, v; = 22.2 mm/s.
Time runs from the top down, and the total
time is 13.5 s; 91.6 mm of the system length
is shown.



FIG. 2. Traveling-finger patterns
(c) at v, = 174.3 mm/s. (a) v; = 6.33 mm/s;
(b) vi = 12.67 mm/s; (c) v = 15.83 mm/s;

ﬂ i } : l \; : : : | : : ii III (d) (d) vi = 17.42 mm/s; (e) v; = 23.75 mm/s;

(f) vi = 33.25 mm/s. The images show 174

‘ ‘ll i I ﬁ I :’ E : i i i /.f i ‘ i ‘ i ‘i (e) mm of the pattern’s length.




FIG. 3. A space-time image of a pattern
traveling to the left at v, = 174.3 mm/s,
v; = 23.75 mm/s. The speed and wavelength
of the fingers increase as they move along the
length of the apparatus. Time runs from top
to bottom and the figure covers 24 s. 151 mm
of the pattern are shown.
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FIG. 4. The variation of the local properties of a nonuni-

form traveling pattern,

as a function of position,

for

vo = 261.4 mm/s, v; = 55.42 mm/s. (a) The pattern it-
self. (b) The local wavelength, A. (c) The asymmetry of the

fingers, A. (d) The local traveling speed, vg.



FIG. 9. The formation of a new finger
when the local wavelength becomes too long.
Here v, = 239.6 mm/s and v; = 47.50 mm/s.
The images were recorded at times (a) 0 s;
(b) 0.10 s; (c) 0.23 s; (d) 0.35 s; (e) 0.68 s; (f)
0.83 s; (g) 1.00 s; (h) 1.23 s; (i) 1.73 s; and
(G) 2.73 s.



